38,610 research outputs found

    Residue currents associated with weakly holomorphic functions

    Get PDF
    We construct Coleff-Herrera products and Bochner-Martinelli type residue currents associated with a tuple ff of weakly holomorphic functions, and show that these currents satisfy basic properties from the (strongly) holomorphic case, as the transformation law, the Poincar\'e-Lelong formula and the equivalence of the Coleff-Herrera product and the Bochner-Martinelli type residue current associated with ff when ff defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In particular, corrected and clarified some things in Section 5 and 6 regarding products of weakly holomorphic functions and currents, and the definition of the Bochner-Martinelli type current

    Event-by-event fluctuations of the charged particle ratio from non-equilibrium transport theory

    Get PDF
    The event by event fluctuations of the ratio of positively to negatively charged hadrons are predicted within the UrQMD model. Corrections for finite acceptance and finite net charge are derived. These corrections are relevant to compare experimental data and transport model results to previous predictions. The calculated fluctuations at RHIC and SPS energies are shown to be compatible with a hadron gas. Thus, deviating by a factor of 3 from the predictions for a thermalized quark-gluon plasma.Comment: This paper clarifies the previous predictions of Jeon and Koch (hep-ph/0003168) and addresses issues raised in hep-ph/0006023. 2 Figures, 10pp, uses RevTe

    Superfluid instability of r-modes in "differentially rotating" neutron stars

    Full text link
    Superfluid hydrodynamics affects the spin-evolution of mature neutron stars, and may be key to explaining timing irregularities such as pulsar glitches. However, most models for this phenomenon exclude the global instability required to trigger the event. In this paper we discuss a mechanism that may fill this gap. We establish that small scale inertial r-modes become unstable in a superfluid neutron star that exhibits a rotational lag, expected to build up due to vortex pinning as the star spins down. Somewhat counterintuitively, this instability arises due to the (under normal circumstances dissipative) vortex-mediated mutual friction. We explore the nature of the superfluid instability for a simple incompressible model, allowing for entrainment coupling between the two fluid components. Our results recover a previously discussed dynamical instability in systems where the two components are strongly coupled. In addition, we demonstrate for the first time that the system is secularly unstable (with a growth time that scales with the mutual friction) throughout much of parameter space. Interestingly, large scale r-modes are also affected by this new aspect of the instability. We analyse the damping effect of shear viscosity, which should be particularly efficient at small scales, arguing that it will not be sufficient to completely suppress the instability in astrophysical systems.Comment: RevTex, 11 figure

    Weighted integral formulas on manifolds

    Full text link
    We present a method of finding weighted Koppelman formulas for (p,q)(p,q)-forms on nn-dimensional complex manifolds XX which admit a vector bundle of rank nn over X×XX \times X, such that the diagonal of X×XX \times X has a defining section. We apply the method to \Pn and find weighted Koppelman formulas for (p,q)(p,q)-forms with values in a line bundle over \Pn. As an application, we look at the cohomology groups of (p,q)(p,q)-forms over \Pn with values in various line bundles, and find explicit solutions to the \dbar-equation in some of the trivial groups. We also look at cohomology groups of (0,q)(0,q)-forms over \Pn \times \Pm with values in various line bundles. Finally, we apply our method to developing weighted Koppelman formulas on Stein manifolds.Comment: 25 page

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    Advective collisions

    Full text link
    Small particles advected in a fluid can collide (and therefore aggregate) due to the stretching or shearing of fluid elements. This effect is usually discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1, 16-30, (1956)]. We show that in complex or random flows the Saffman-Turner theory for the collision rate describes only an initial transient (which we evaluate exactly). We obtain precise expressions for the steady-state collision rate for flows with small Kubo number, including the influence of fractal clustering on the collision rate for compressible flows. For incompressible turbulent flows, where the Kubo number is of order unity, the Saffman-Turner theory is an upper bound.Comment: 4 pages, 1 figur

    R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism

    Full text link
    We derive the hydrodynamical equations of r-mode oscillations in neutron stars in presence of a novel damping mechanism related to particle number changing processes. The change in the number densities of the various species leads to new dissipative terms in the equations which are responsible of the {\it rocket effect}. We employ a two-fluid model, with one fluid consisting of the charged components, while the second fluid consists of superfluid neutrons. We consider two different kind of r-mode oscillations, one associated with comoving displacements, and the second one associated with countermoving, out of phase, displacements.Comment: 10 page

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200

    Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910

    Full text link
    The young, fast-spinning, X-ray pulsar J0537-6910 displays an extreme glitch activity, with large spin-ups interrupting its decelerating rotation every ~100 days. We present nearly 13 years of timing data from this pulsar, obtained with the {\it Rossi X-ray Timing Explorer}. We discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected in the complete data span. Our results corroborate the previously reported strong correlation between glitch spin-up size and the time to the next glitch, a relation that has not been observed so far in any other pulsar. The spin evolution is dominated by the glitches, which occur at a rate ~3.5 per year, and the post-glitch recoveries, which prevail the entire inter-glitch intervals. This distinctive behaviour provides invaluable insights into the physics of glitches. The observations can be explained with a multi-component model which accounts for the dynamics of the neutron superfluid present in the crust and core of neutron stars. We place limits on the moment of inertia of the component responsible for the spin-up and, ignoring differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid decrease between glitches, the spin-down rate increased over the 13 years, and we find the long-term braking index nl=1.22(4)n_{\rm l}=-1.22(4), the only negative braking index seen in a young pulsar. We briefly discuss the plausible interpretations of this result, which is in stark contrast to the predictions of standard models of pulsar spin-down.Comment: Minor changes to match the MNRAS accepted versio
    corecore